

PRODUCT INFORMATION LETTER

PIL IPD-PWR/12/7560 Dated 06 Nov 2012

Top Metallization Switch from AlSiCu to AlCu on all LDMOS Technologies

Sales Type/product family label	see attached list
Type of change	Waferfab process change
Reason for change	Product rationalization
Description	Switchover from AlSiCu to AlCu Top Metallization. This change has already successfully been implemented on the STH5P Technology and will be extended to all other less critical LDMOS Technologies (STH1, STH2, STH4, STH5L). Usage of the same metal target on sputtering equipment will avoid changes of targets and consequently longer equipment uptime and availability. As all products involved have metal barrier, the silicon in metal is no more necessary.
Forecasted date of implementation	29-Nov-2012
Forecasted date of samples for customer	30-Oct-2012
Forecasted date for STMicroelectronics change Qualification Plan results availability	30-Oct-2012
Involved ST facilities	Catania

Name	Function
Juhel, Serge	Marketing Manager
Di giovanni, Filippo	Process Owner
Petralia, Francesco	Q.A. Manager

DOCUMENT APPROVAL

COMMERCIAL_PRODUCT	FINISHED_GOOD	FORECASTED DATE OF IMPLEMENTATION			
PD85035A-E	PD85035A-E\$M				
PD85035AS-E	PD85035AS-E\$M				
PD85035ASTR-E	PD85035ASTR-E\$M				
PD20015C	PD20015C\$				
PD85025C	PD85025C\$				
PD57002-E	PD57002-E\$M				
PD55035-E	PD55035-E\$M				
PD55035S-E	PD55035S-E\$M				
PD55035STR-E	PD55035STR-E\$M	Nov'12			
PD57070-E	PD57070-E\$M	110012			
PD57070S-E	PD57070S-E\$M				
PD54010D2	PD54010D2\$1				
PD55025-E	PD55025-E\$M				
PD55025S-E	PD55025S-E\$M				
PD55025TR-E	PD55025TR-E\$M	1			
PD57060-E	PD57060-E\$M	1			
PD57060S-E	PD57060S-E\$M	1			
PD57060TR-E	PD57060TR-E\$M	1			
PD55003-E	PD55003-E\$M				
PD55003S-E	PD55003S-E\$M	1			
PD55003TR-E	PD55003TR-E\$M	1			
PD57018-E	PD57018-E\$M	Dec'12			
PD57018S-E	PD57018S-E\$M	1 1			
PD57018STR-E	PD57018STR-E\$M	1			
PD57018TR-E	PD57018TR-E\$M	1			
PD55003L-E	PD55003L-E\$				
PD54003-E	PD54003-E\$M	1			
PD55008-E	PD55008-E\$M	1			
PD55008S-E	PD55008S-E\$M	1			
PD55008TR-E	PD55008TR-E\$M	Jan'13			
PD57030-E	PD57030-E\$M				
PD57030S-E	PD57030S-E\$M				
LET54008D2	LET54008D2\$1	1			
PD54003L-E	PD54003L-E\$	1			
PD55008L-E	PD55008L-E\$	1			
PD54008L-E	PD54008L-E	1			
PD54008L-E	PD54008L-E\$	1			
PD20015-E	PD20015-E\$M	1			
PD84008-E	PD84008-E\$M	4			
PD84008-E	PD84008D1(9228)	1			
PD84008D2	PD84008D2\$1	Mar'13			
PD84008D2	PD84008D2\$1 PD84008D2\$2	4			
PD84008D2	PD84008L-E\$	4			
PD85025-E		-			
	PD85025-E\$M	4			
PD85025S-E	PD85025S-E\$M	4			
PD85025STR-E	PD85025STR-E\$M	-			
PD85025TR-E	PD85025TR-E\$M				
PD84010-E	PD84010-E\$M	4			
PD84010TR-E	PD84010TR-E\$M	4			
PD85035-E	PD85035-E\$M	Apr '13			
PD85035S-E	PD85035S-E\$M	4 ' '			
PD85035STR-E	PD85035STR-E\$M	4			
PD85035STR1-E	PD85035STR1-E\$M				
PD84001	PD84001\$	4			
PD54008-E	PD54008-E\$M	4			
PD54008D2	PD54008D2\$1	4			
PD54008S-E	PD54008S-E\$M	4			
PD54008TR-E	PD54008TR-E\$M				
PD55015-E	PD55015-E\$M	May'13			
PD55015S-E	PD55015S-E\$M	4			
PD55015STR-E	PD55015STR-E\$M	1			
PD55015TR-E	PD55015TR-E\$M	1			
PD57045-E	PD57045-E\$M	1			
PD57045TR-E	PD57045TR-E\$M				
PD57006-E	PD57006-E\$M				
PD57006S-E	PD57006S-E\$M	lulv/12			
PD57006STR-E	PD57006STR-E\$M	July'13			
	PD57006TR-E\$M				

June 2012

RER-157W-12

Reliability Evaluation Report on Extension of STH5P improvements to all LDMOS

Product Line Product Description P/N Product Group

Product division

Package Silicon Process technology Production mask set rev Maturity level step

General InformationA580nRF power transistorPD85035A-EIPDPOWER TRANSISTORSPower RFPowerSO-10 R.F. (gull wing)chnologyLDMOS STH5et revNSE011-C30

Loc	ations
Wafer fab	CATANIA
Assembly plant	MUAR
Reliability Lab	CATANIA Reliability Lab
	5
Reliability assessment	Pass

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	13-Jun-2012	7	A.Riciputo	G.Presti	First Release

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

June 2012

RER-157W-12

Quality and Reliability

TABLE OF CONTENTS

1	APPL	LICABLE AND REFERENCE DOCUMENTS	3
2	GLO	SSARY	3
		ABILITY EVALUATION OVERVIEW	
	3.1	OBJECTIVES	.3
	3.2	CONCLUSION	.3
4	DEVI	ICE CHARACTERISTICS	.4
	4.1	DEVICE DESCRIPTION	4
	4.2	CONSTRUCTION NOTE	4
5	TEST	IS RESULTS SUMMARY	
	5.1	TEST VEHICLE	5
		TEST PLAN AND RESULTS SUMMARY	
6	ANN	EXES	.6
	6.1	DEVICE DETAILS	6
	6.2	TESTS DESCRIPTION	.7

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
AEC-Q101	Stress test qualification for automotive grade discrete semiconductors

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size
RER.325W.10	Reliability Report on LDMOS STH5P technology qualification

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 Objectives

To extend STH5P improvements on all LDMOS

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 Device description

Common source N-channel enhancement-mode lateral field-effect RF power transistor.

4.2 Construction note

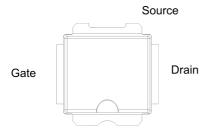
	PD85035A-E
Wafer/Die fab. information	
Wafer fab manufacturing location	CATANIA
Technology	LDMOS STH5
Die finishing back side	CHROMIUM/NICKEL/GOLD
Die size	5200, 1090 micron
Bond pad metallization layers	AlCu
Wafer Testing (EWS) information	
Electrical testing manufacturing location	CATANIA
Tester	T84
Assembly information	
Assembly site	MUAR
Package description	PowerSO-10 R.F. (gull wing)
Molding compound	SUMITOMO EME-G700LS
Frame material	PSO-10 RF Mtx formed leads SpAg
Die attach process/material	Hard / Au Eutectic
Wires bonding materials/diameters	Au/ 1.2mils
Final testing information	
Testing location	ST-BSK Casablanca
Tester	TESEC

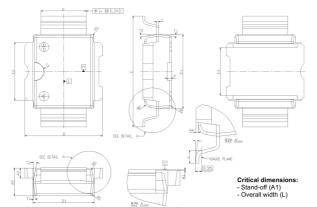
5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Diffusion Lot	Technical Code	Package	Product Line	Comments
1	Y121096 (wfrs:#09, #04, #12)	TM3H*A5800Y4	PSO10	A580	

5.2 Test plan and results summary


Р	D850)35A-E						
Tost	Test PC Std ref.		Conditions		Steps	Failure/SS	Note	
			Conditions	S SS Steps		Lot 1	Note	
Die Orie	Die Oriented Tests							
		JESD22			168 H	0/77		
HTRB	Ν	A-108	Tj = 150°C, +32V	77	500 H	0/77		
		A 100			1000 H	0/77		
		JESD22			168 H	0/45		
HTSL	Ν	A-103	Ta = 175°C	45	500 H	0/45		
		A-105			1000 H	0/45		
Package	Orie	ented Tests	-	-				
PC		JESD22 A-113	Drying 24 H @ 125°C Store 40 H @ Ta=60°C Rh=60% Over Reflow @ Tpeak=250°C 3 times		Final	Pass		
AC	Υ	JESD22 A-102	Pa=2Atm / Ta=121°C	77	96 H	0/77		
		JESD22			100 cy	0/77		
тс	Υ	JESD22 A-104	$Ta = -65^{\circ}C \text{ to } 150^{\circ}C$	77	200 cy	0/77		
		A-104			500 cy	0/77		
		JESD22			168 H	0/77		
THB	Υ	JESD22 A-101	Ta = 85°C, RH = 85%, +24V	77	500 H	0/77		
					1000 H	0/77		


<u>6</u> ANNEXES

6.1 Device details

6.1.1 Pin connection

6.1.2 Package outline/Mechanical data

Dim.		mm.			Inch	
	Min	Тур	Max	Min	Тур	Max
A1	1.62	1.67	1.72	0.064	0.065	0.068
A2	3.4	3.5	3.6	0.134	0.137	0.142
A3	1.2	1.3	1.4	0.046	0.05	0.054
A4	0.15	0.2	0.25	0.005	0.007	0.009
а		0.2			0.007	
b	5.4	5.53	5.65	0.212	0.217	0.221
с	0.23	0.27	0.32	0.008	0.01	0.012
D	9.4	9.5	9.6	0.370	0.374	0.377
D1	7.4	7.5	7.6	0.290	0.295	0.298
Е	15.15	15.4	15.65	0.595	0.606	0.615
E1	9.3	9.4	9.5	0.365	0.37	0.375
E2	7.3	7.4	7.5	0.286	0.292	0.294
E3	5.9	6.1	6.3	0.231	0.24	0.247
F		0.5			0.019	
G		1.2			0.047	
R1			0.25			0.01
R2		0.8			0.031	
T1		6 deg			6 deg	
T2		10 deg			10 deg	

6.2 Tests Description

Test name	Description	Purpose
Die Oriented		
HTRB High Temperature Reverse Bias HTFB High Temperature Forward (Gate) Bias	 The device is stressed in static configuration, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffusion process and internal circuitry limitations; 	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com